Как работает трансформатор напряжения простыми словами
Перейти к содержимому

Как работает трансформатор напряжения простыми словами

  • автор:

Трансформатор: подробно простым языком

Трансформатор — электрическое устройство, передающее энергию переменного тока от одного контура к другому способом электромагнитного взаимодействия. Большинство трансформаторов состоят из трёх частей: первичная обмотка, вторичная обмотка и сердечник. Трансформатор используется для того, чтобы преобразовывать переменный ток в электропитание для бытовых и промышленных приборов.

Обратите внимание на основы электричества и на приборы электроники.

Принцип работы трансформатора

Трансформаторы работают по принципу электромагнитного взаимодействия. Чтобы электромагнитное взаимодействие происходило, необходимо присутствие магнитного поля и проводника, между которыми должно происходить относительное движение.

Когда на первичную обмотку трансформатора подаётся переменный ток, вокруг обмотки образуется магнитное поле. Поскольку подаётся переменный ток, меняющий направление каждую половину цикла, ежесекундно происходит многократное расширение и исчезновение магнитного поля. Вторичная обмотка как раз и является тем проводником, который нужен для электромагнитного взаимодействия, а расширение и исчезновение магнитного поля обеспечивает относительное движение. Итак, когда соблюдены все три требования, происходит электромагнитное взаимодействие. В результате, во вторичной обмотке трансформатора индуцируется напряжение.

Читайте также

Повторитель напряжения имеет высокое входное сопротивление, низкое выходное сопротивление и коэффициент усиления равный единице

Что такое трансформатор

Этот видеоролик посвящен ответам на вопросы: что такое трансформатор тока, для чего нужен, как он работает. Также будет наглядно показано, из чего состоит трансформатор, как он устроен. Все понятия объясняются простым, понятным языком, что поможет быстро понять принцип работы устройства и область его применения.

Трансформатор — это статическое электромагнитное устройство, преобразующее переменный ток одной величины в переменный ток иной величины, большей или меньшей. В зависимости от этого трансформаторы делят на понижающие и повышающие. Работа устройства основывается на электромагнитной индукции. Для чего нужен трансформатор тока? Например, для удобного измерения токов больших величин.

Трансформатор включает в себя магнитопровод и две не связанные друг с другом обмотки — первичную и вторичную. К одной подключается источник переменного тока, ко второй — потребитель тока. В видео будет разъяснен такой важный параметр как коэффициент трансформации, который равен отношению напряжения в первичной и вторичной обмотках.

Видео взято с Youtube-канала «Простым языком».

Если вам нужно купить трансформатор тока, вы можете сделать это в нашем интернет-магазине. В каталоге на сайте представлен большой выбор трансформаторов. Сориентироваться в них вам поможет фильтр по характеристикам или консультация с нашими опытными менеджерами. Они помогут вам выбрать подходящую для ваших целей модель или осуществить расчет трансформатора тока

Как работает трансформатор напряжения

Для преобразования переменного напряжения одной величины в переменное напряжения другой величины, используют трансформатор напряжения. Трансформатор напряжения работает благодаря явлению электромагнитной индукции: изменяющийся во времени магнитный поток порождает ЭДС в пронизываемой им обмотке (или обмотках).

Трансформатор напряжения

Первичная обмотка трансформатора соединяется своими выводами с источником переменного напряжения, а к выводам вторичной обмотки присоединяется нагрузка, которую необходимо питать напряжением более низким или более высоким, чем напряжение источника, от которого питается данный трансформатор.

Благодаря наличию сердечника (магнитопровода), магнитный поток, создаваемый первичной обмоткой трансформатора, не рассеивается где попало, а сосредоточен главным образом в ограниченном сердечником объеме. Переменный ток, действующий в первичной обмотке, намагничивает сердечник то в одном, то — в противоположном направлении, при этом изменение магнитного потока происходит не рывками, а гармонически, синусоидально (если речь идет о сетевом трансформаторе).

Можно сказать, что железо сердечника увеличивает индуктивность первичной обмотки, то есть повышает ее способность создавать магнитный поток при прохождении тока, и улучшает свойство препятствовать нарастанию тока при приложении к выводам обмотки напряжения. Поэтому на холостом ходу (в не нагруженном режиме) трансформатор потребляет сущие миллиамперы, хотя изменяющееся напряжение на обмотку действует.

Принцип работы траснформатора напряжения

Вторичная обмотка является у трансформатора принимающей. Она принимает изменяющийся магнитный поток, порождаемый током первичной обмотки, и посылаемый благодаря магнитопроводу сквозь свои витки. Изменяющийся с определенной скоростью магнитный поток, пронизывающий витки вторичной обмотки, по закону электромагнитной индукции наводит в каждом ее витке определенную ЭДС. Эти индуцированные ЭДС складываются в каждый момент времени от витка к витку, формируя напряжение вторичной обмотки (напряжение холостого хода трансформатора).

Здесь своевременным будет отметить, что чем быстрее изменяется магнитный поток в сердечнике, тем большее напряжение наводится на каждом витке вторичной обмотки трансформатора. А поскольку и первичная и вторичная обмотки пронизываются одним и тем же магнитным потоком (создаваемым переменным током первичной обмотки), то и напряжение на каждом витке как первичной, так и вторичной обмотки, получается одинаковым, исходя из величины магнитного потока и скорости его изменения.

Трансформатор ABB

Если копнуть глубже, то изменяющийся магнитный поток в сердечнике создает в пространстве вокруг себя электрическое поле, напряженность которого тем больше, чем выше скорость изменения магнитного потока, и чем больше величина этого изменяющегося магнитного потока. Данное вихревое электрическое поле действует на электроны, расположенные в проводе вторичной обмотке, толкает их в определенную сторону, поэтому на концах вторичной обмотки можно измерить электрическое напряжение.

Если ко вторичной обмотке трансформатора подключить нагрузку, то по ней потечет ток, а значит в сердечнике возникнет магнитный поток, создаваемый этим током вторичной обмотки.

Магнитный поток, порождаемый током вторичной обмотки, то есть током нагрузки, окажется направлен (см. правило Ленца) против магнитного потока первичной обмотки, и значит наведет в первичной обмотке противо-ЭДС, которая приведет к росту тока в первичной обмотке, и соответственно — к увеличению потребляемой трансформатором от сети мощности.

Возникновение противоположного первичному, вторичного магнитного потока внутри сердечника, в качестве эффекта от подключенной нагрузки, эквивалентно уменьшению индуктивности первичной обмотки. Вот почему трансформатор под нагрузкой потребляет значительно больше электрической энергии, чем на холостом ходу.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Силовые трансформаторы: определение, классификация и принцип работы

Наиболее распространенными электрическими устройствами в промышленности и в быту являются трансформаторы. Их назначение – передача мощности внутри несогласованной электрической цепи между ее различными схемами. Применяются в тех случаях, когда требуется понизить или повысить напряжение между источником энергии и потребителем. Также трансформаторы включены в схемы блоков питания, преобразующих переменный ток в постоянный. В основе работы трансформаторов лежит их способность передавать электроэнергию между контурами посредством магнитной индукции.

Силовые трансформаторы — электромагнитные устройства, предназначенные для преобразования напряжений переменного тока, сохраняя при этом его частоту, а также для преобразования самой системы электроснабжения.

Конструкция и устройство силовых трансформаторов

Основной частью каждого силового трансформатора является его сердечник с несколькими обмотками, изготовленный из ферромагнитного материала. Как правило, это тонкие листы специального трансформаторного железа, обладающего магнитомягкими свойствами. Листы укладываются таким образом, чтобы форма стержней под обмотками в сечении была приближенной к кругу. Для повышения КПД устройства и снижения потерь, целые листы перекрывают стыки между отдельно взятыми пластинами.

Трансформаторная обмотка выполняется, как правило, из медного провода с прямоугольным или круглым сечением. Каждый виток изолирован от самого магнитопровода, а также от соседних витков. Для циркуляции охладителя, между обмотками и отдельными ее слоями предусматриваются технические пустоты.

Каждый трансформатор имеет как минимум две обмотки: первичную (на нее подается электрический ток) и вторичную (ток снимается после преобразования его напряжения).

Принцип работы

Принцип работы любого силового трансформатора заключается в явлении электромагнитной индукции. На первичную обмотку подается переменный ток, который образует в магнитопроводе переменный магнитный поток. Это происходит за счет его замыкания на магнитопроводе и образования сцепления между обмотками, индуцируя ЭДС. Нагрузка, подключенная ко вторичной обмотке, приводит к образованию в ней напряжения и тока.

Конструктивно, для получения любого напряжения на вторичной обмотке, используется необходимое соотношение витков между обмотками. Силовой трансформатор обладает свойством обратимости. Иными словами, он может быть использован и для повышения, и для понижения напряжения. В большинстве случаев силовой трансформатор применятся для решения определенных задач. Например, конкретно повышать или понижать напряжение. У повышающего трансформатора напряжение на первичной обмотке ниже, чем на вторичной.

Классификация силовых трансформаторов

В зависимости от класса напряжения и полной потребляемой мощности, силовые трансформаторы условно делятся на следующие категории:

  1. До 100 кВА, до 35кВ;
  2. 100 – 1000 кВА, до 35кВ;
  3. 1000 – 6300 кВА, до 35кВ;
  4. Более 6300кВА, до 35кВ;
  5. До 32 000 кВА, 35 – 110 кВ;
  6. 32 000 – 80 000 кВА, до 330 кВ;
  7. 80 000 – 200 000 кВА, до 330 кВ;
  8. Более 200 000 кВА, более 330 кВ.

Виды силовых трансформаторов

Силовые трансформаторы можно разделить на несколько видов, основываясь на следующих характеристиках и показателях:

  • Тип охлаждения. Различают сухие и масляные трансформаторы. Первый вариант имеет воздушное охлаждение, используется там, где повышены требования к экологии и пожаробезопасности. Второй вариант представляет собой корпус, заполненный маслом с диэлектрическими свойствами, в который погружен сердечник с обмотками;
  • Климатическое исполнение: наружные и внутренние варианты;
  • Количество фаз. Бывают трехфазные (наиболее распространенные) и однофазные;
  • Количество обмоток. Различают двухобмоточные и многообмоточные варианты;
  • Назначение: повышающие и понижающие.

Дополнительным критерием служит наличие или отсутствие регулятора выходного напряжения.

Элементы силового трансформатора

Конструкция силового трансформатора подразумевает наличие следующих элементов:

  • Силовые вводы – устройства, через которые подается нагрузка. Могут быть расположены внутри изделия или снаружи. Вводы изолированы различными специальными материалами, отличаются по типу изоляции и конструкции;
  • Охладители. Для мощных силовых трансформаторов предусматривается масляная система охлаждения. Охлаждение самого же масла производится посредством радиаторов, гофрированного бака, принудительной вентиляции, масляно-водных охладителей или циркуляционными насосами;
  • Регуляторы выходного напряжения – устройства, предназначенные для изменения коэффициента трансформации. Могут срабатывать как под действием определенной нагрузки, так и без нее (в зависимости от конструкции). По сути, регуляторы добавляют, либо уменьшают в обмотке количество ее витков.

Силовые трансформаторы могут быть оснащены дополнительным навесным оборудованием:

  • Газовое реле – устройство с функцией защиты. Если трансформатор работает нестабильно, масло разлагается на составляющие с выделением газа. Газовое реле либо отключает трансформатор, либо оповещает предупреждающими сигналами;
  • Индикаторы температуры – датчики, производящие замеры температуры масла;
  • Влагопоглотители – устройства, поглощающие образуемый под защитной крышкой конденсат, тем самым предотвращая его попадание в масло;
  • Система регенерации масла;
  • Автоматическая система защиты от повышения давления охладителя;
  • Индикатор уровня масла.

Параметры силового трансформатора

  • Номинальная мощность. Для трансформатора с двумя обмотками параметр равен мощности каждой из них. Для трехобмоточного варианта с разной мощностью обмоток параметр равен большему из показателей;
  • Номинальное напряжение обмоток – характерный параметр для холостой работы;
  • Номинальный ток – показатель, при котором разрешается длительная эксплуатация устройства;
  • Напряжение короткого замыкания — характеристика полного сопротивления обмоток.
  • Потери короткого замыкания;
  • Ток холостого хода – потери материала магнитопровода (реактивные и активные);
  • Потери тока холостого хода;
  • Коэффициент трансформации.

Как выбрать силовой трансформатор

Выбор силового трансформатора для эксплуатации на предприятиях основан на подборе мощности, а также в соответствии с требованиями к надежности питания. Чтобы обеспечить бесперебойное питание, в некоторых случаях требуется установка нескольких трансформаторов. Мощность каждого устройства подбирается таким образом, чтобы при выходе его из строя, другие устройства были способны взять на себя функции этого недостающего звена, с учетом возможных перегрузок.

Еще один важный критерий – наличие защиты:

  • От внутренних повреждений. Обеспечивается устройствами, контролирующими наличие газов, температуру, давление и уровень масляного охладителя;
  • От перегрузок. Используется так называемая дифференциальная защита, когда на каждой фазе установлены трансформаторы тока.

Ремонт и техническое обслуживание

Надежность силовых трансформаторов напрямую зависит от качества и своевременности их обслуживания. Устройства, установленные в помещениях, где работает персонал предприятия, подвергаются ежедневному осмотру с контролем показателей уровня масла, состояния поглотителя и устройств регенерации. Кроме того, проверяется целостность корпуса и основных элементов. Трансформаторы в помещениях без персонала осматриваются раз в месяц, а трансформаторные пункты – дважды в год.

Внеплановый осмотр силового трансформатора и его систем защиты проводится при резком изменении температуры окружающего воздуха, а также при аварийных режимах. Периодическому обслуживанию подвергаются и устройства регулировки напряжения. Причина – окисление контактных групп, что приводит к возрастанию их переходного сопротивления. Перед сезонными изменениями нагрузки (обычно дважды в год) устройство отключается от потребителей и питания, после чего регулятор напряжения переводится последовательно во все возможные положения. Процедура способствует разрушению пленки окислов.

Лабораторный анализ масла производится каждый год при капитальном ремонте. Если масло не удовлетворяет требованиям при визуальном осмотре (цвет) или по данным обследования, производится его замена или доливка.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *